采用某一種結(jié)構(gòu)的流動(dòng)性試樣,改變型砂的水分、煤粉含量、澆注溫度、直澆道高度等因素中
的一個(gè)因素,以判斷該變動(dòng)因素對充型能力的影響。各種測定合金流動(dòng)性的試樣都可用以測
定合金的充型能力。
流動(dòng)性試樣的類型很多,如螺旋形、球形、U形、楔形、豎琴形、真空試樣 (即用真
空吸鑄法)等。在生產(chǎn)和科學(xué)研究中應(yīng)用最多的是螺旋形試樣,如圖116所示,其優(yōu)點(diǎn)是
靈敏度高、對比形象、可供金屬液流動(dòng)相當(dāng)長的距離 (如15m),而鑄型的輪廓尺寸并不太
大。缺點(diǎn)是金屬流線彎曲,沿途阻力損失較大,流程越長,散熱越多。
熔化潛熱使晶粒瓦解,液體原子具有更高
的能量,而金屬的溫度并不升高。從熱力學(xué)角度,在恒壓時(shí),外界所供給的潛熱,除使體積
膨脹做功外,還增加系統(tǒng)的內(nèi)能,如式(11)所示。在等溫等壓下,熵值的增量如式(12)
所示。
系統(tǒng)熵值增加表示原子排列發(fā)生紊亂。因此,熔化過程就是金屬從規(guī)則的原子排列突變
為紊亂的非晶態(tài)結(jié)構(gòu)的過程。
2液態(tài)金屬的結(jié)構(gòu)
(1)從物質(zhì)熔化 (汽化)過程對液態(tài)金屬結(jié)構(gòu)的認(rèn)識(shí) 如表11所示,金屬物質(zhì)熔化時(shí)
的體積一般僅增加3%~5%,即原子平均間距僅增加1%~15%,熔化時(shí)的熵值變化量遠(yuǎn)
小于加熱膨脹過程。
在鑄件斷度梯度相近的情況下,固液相區(qū)的寬度取決于鑄件合金的凝固溫度區(qū)間ΔtC 的大小。圖
8是三種不同碳質(zhì)量分?jǐn)?shù)的碳鋼在砂型和金屬型中凝固時(shí)測得的動(dòng)態(tài)凝固曲線??梢?,
碳質(zhì)量分?jǐn)?shù)增加,碳鋼的結(jié)晶溫度范圍在不斷擴(kuò)大,鑄件斷面的凝固區(qū)域隨之加寬。低
在砂型中的凝固近于逐層凝固方式,中碳鋼為中間凝固方式,高碳鋼近于體積凝固。
當(dāng)鑄件合金成分確定后,鑄件斷面固液相區(qū)的寬度則取決于鑄件中的溫度梯度。溫度梯
度較大時(shí),固液相區(qū)的寬度較窄,則合金趨向于逐層凝固方式,反之依然。